

## Distributor Thoughts on Smart Grid

### Sylvia Smith Budget & Rates Manager

Tony Richman Meter Services Manager-Smart Grid



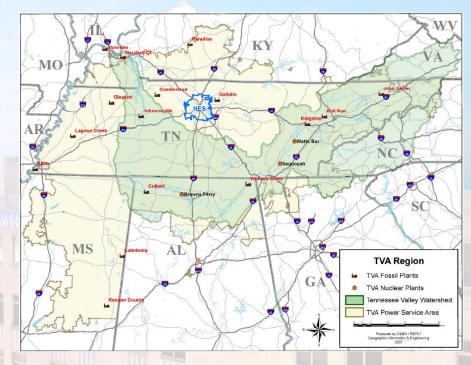




- Introduction
- Smart Grid Program Strategy & Technical Aspects
- Financial Considerations
- Progress, Results & Future of NES' Smart Grid






# Introduction





### About NES

- 12<sup>th</sup> largest Municipalowned Power Company
- 360,000 customers
- Over 700 square miles all of Davidson County and portions of 6 others
- Purchase all power
  from TVA







### **NES Fiscal Facts**

- Peak demand of 2,700 MW (summer peak)
- 65 substations and about 300 feeders
- 161kV, 69kV, 23.9kV, 13.8kV, & 4kV
- 8 SONET fiber rings and Ethernet to all high-voltage substations
- Over \$1 billion in annual revenue



### **NES' Smart Grid Guiding Principles**

- Align with NES corporate vision and strategy.
- Use the NES fiber system for backhaul communications where feasible.
- Implement a system that can readily incorporate new requirements.
- Minimize disruption to operations when implementing AMI.
- Avoid commitments to limited lifetime and proprietary technology.
- Purchase off-the-shelf components, including software, where practical.
- Follow industry standards wherever possible.
  NASHVILLE ELECTRIC SERVICE



# Strategy & Technical





### Smart Grid Program Drivers

### Why Are We Doing This?

- Tennessee Valley Authority's goal is to avoid/defer building new generating facilities
- TVA time-differentiated rate structure shifted financial risks and impacts to distributors
- NES is recouping some costs through Voltage Regulation by shaving peak demand charges





### "Virtual" Power Plant

### Before Virtual Power Plant









### **Smart Grid VPP Projects**

### Advanced Voltage Management

- Voltage reduction results in a lower kw demand
- Approx. 700 meters will monitor system voltage
- 40 MW
- Direct Load Control
  - Commercial HVAC NASHVILLE ELECTRIC SERVI
  - Commercial and Residential Water Heaters
  - 10.25 MW
- Critical Peak Pricing (future)
  - Voluntary load reduction
  - 2 MW





### **Smart Grid Project**

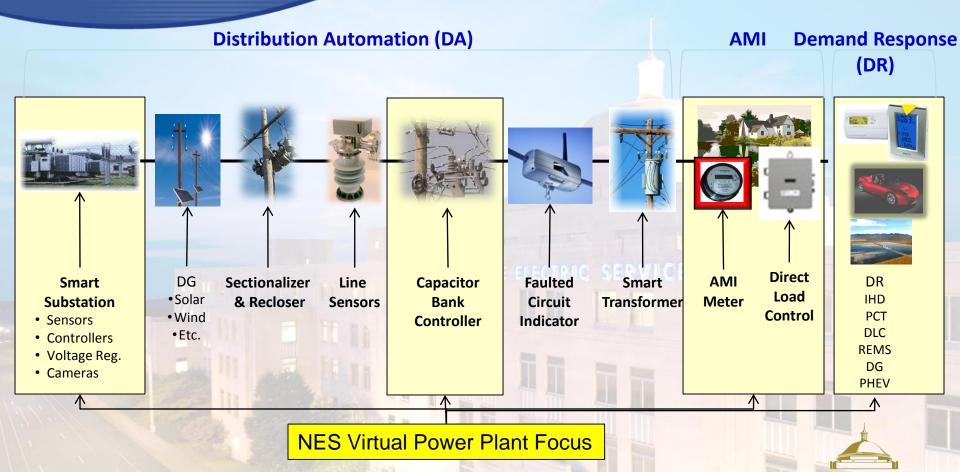
- Install system-wide network
- Install 30,000 new meters at key points
- 9,616 commercial meters
- 10,956 residential meters with remote connect/disconnect switch, 9,428 without
- 700 voltage monitoring meters
- 127 capacitor banks
- 4,000 DLC devices for HVAC/water heaters







### **Advanced Metering Infrastructure**


### **AMI Network Components**

- 51,000 meters
- 27 collectors on poles at substations, a radio tower and one on Verizon backhaul
- 621 routers on poles and street light arms

Inside of Collector

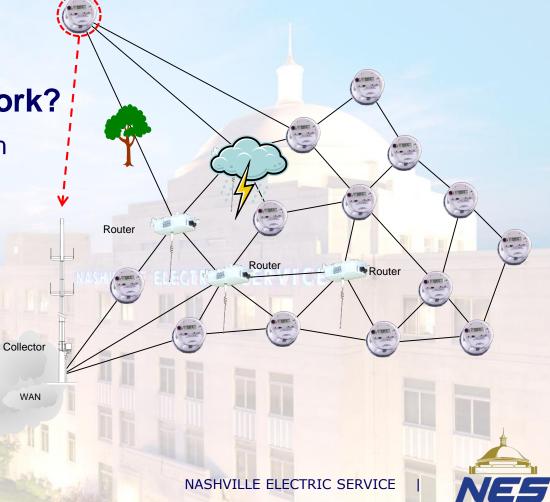


NES's Smart Grid will support AMI, DA and DR applications in order to address NES needs.



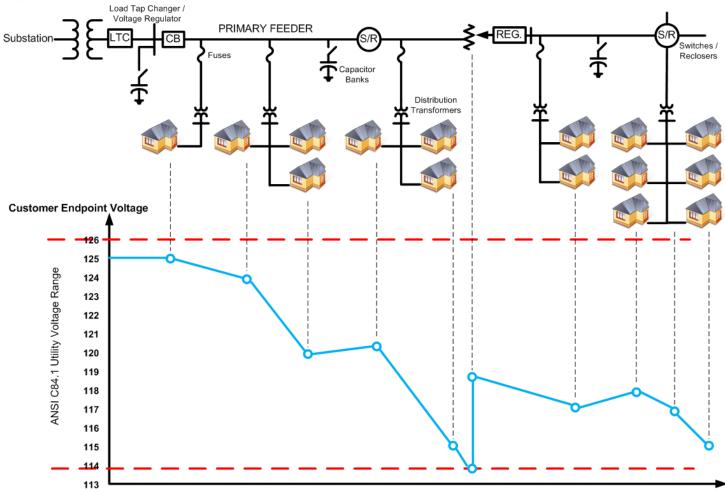
### Advanced Metering Infrastructure (AMI)

### How Does Our AMI Work?


Wireless Mesh Radio System AMI Network Components

- Meters
- Routers
- Collectors

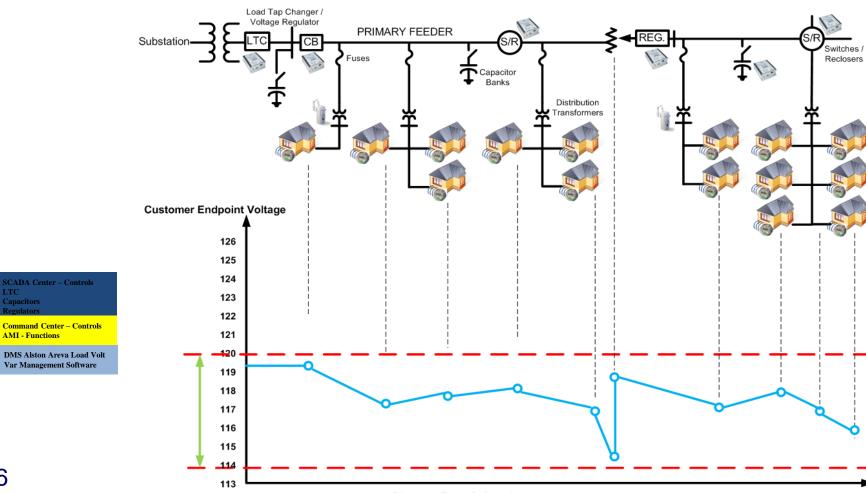
FIN


Server

Server



### **Normal Voltage Profile**






**Distance From Substation** 

### AMI Enhanced Volt Management

Source: Landis+Gyr





### **Direct Load Control**

- Program 10.25 MW June 1, 2014
- Pilot 600 units June 1, 2013
- Load Control Switches
- RTUs to be used on Building Management Systems
- Potential for 4k to 10k switches
- Deployed across service territory as ELECTRIC SERVICE
- TVA Saturation Survey





### Gridstream Load Control Receiver

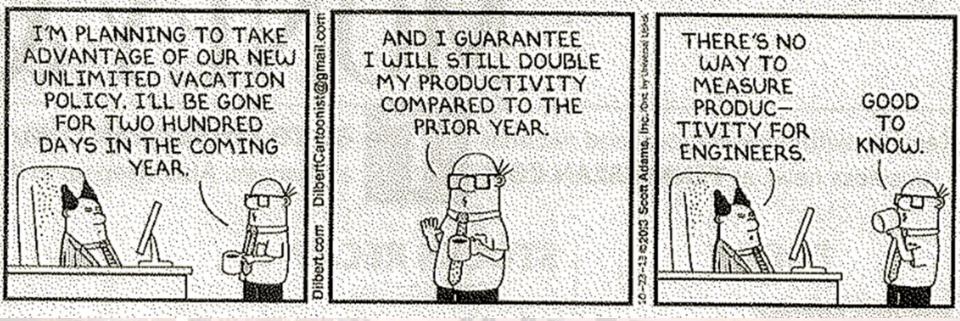
- CSE Load Control Receiver (LCR) –Ideal for controlling residential and small commercial and industrial appliances such as air conditioners, strip heat, pool pumps and water heaters.
  - L+G Network Interface Card (NIC)
- On-board logic to execute cycling profiles with configurable shed times and duty cycles.
- Interruptible control events or return to normal operation without additional commands.
- Configured to stagger the ramp-in and ramp-out of control events.





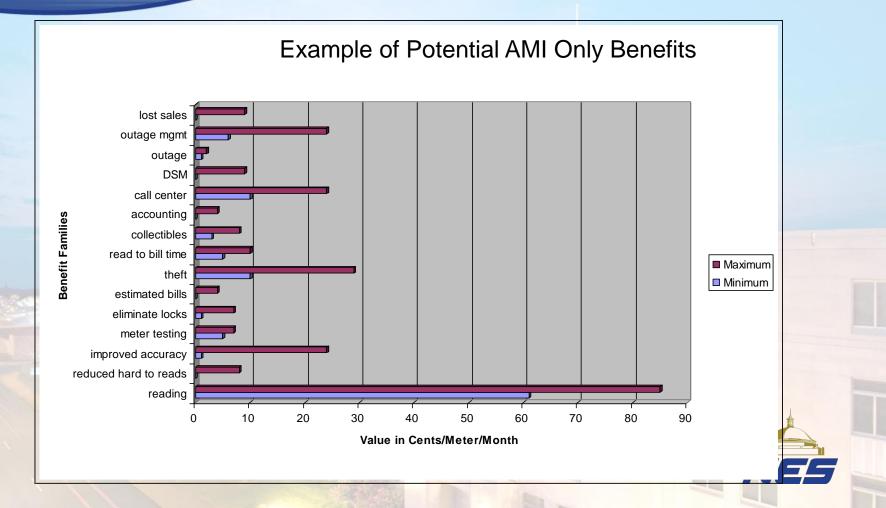
### Gridstream Load Control Receiver

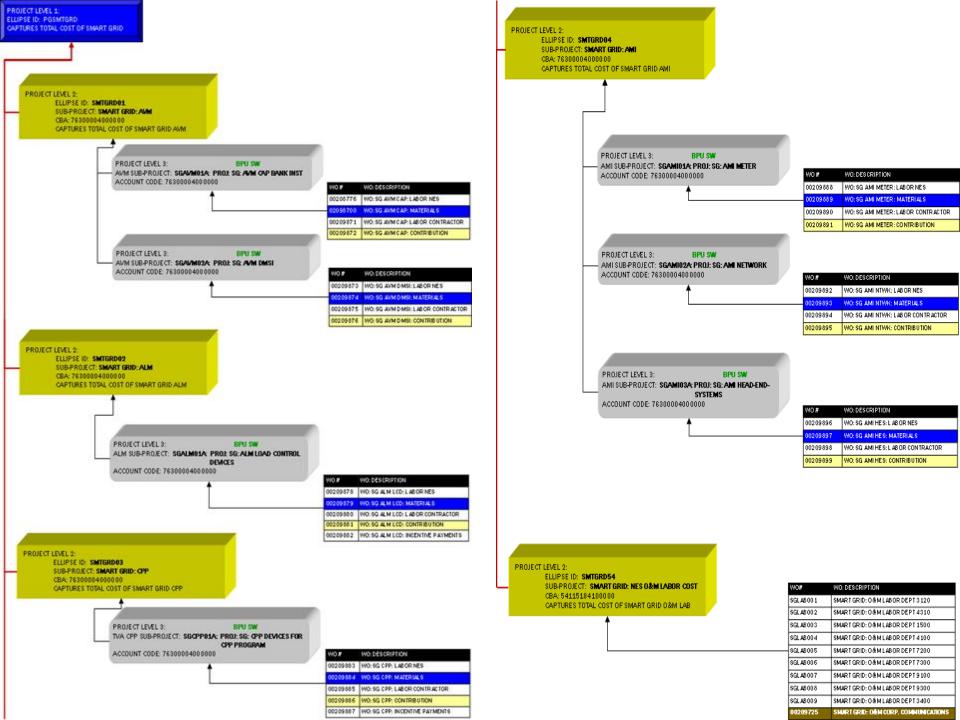




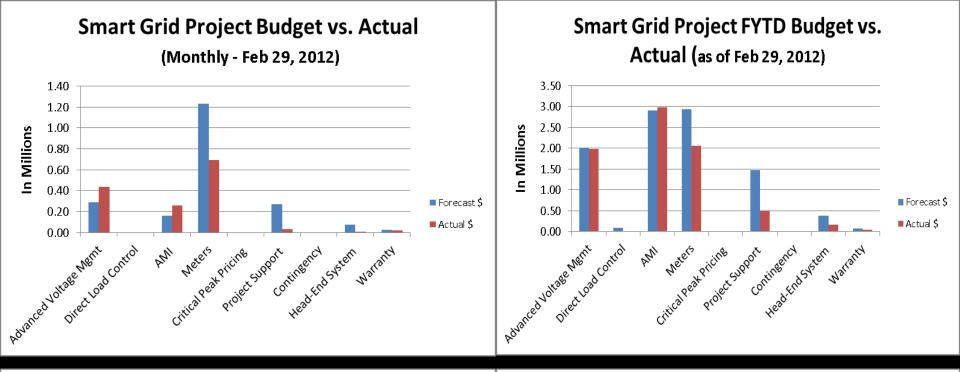

# Financial Considerations



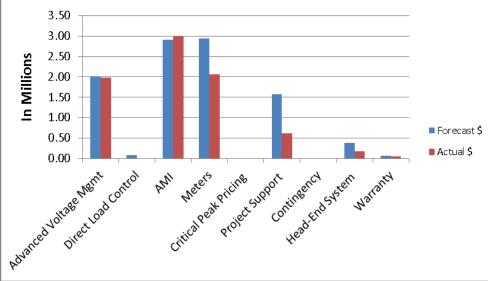




### **DILBERT** Dilbert appears Monday through Saturday in the Business section.



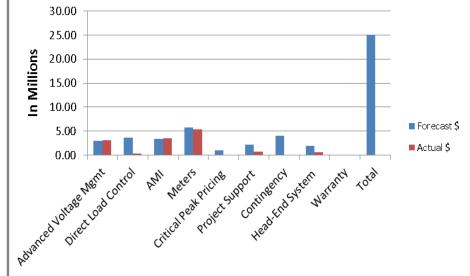



### **NES Smart Grid Business Case**






| Major Cost Categories for Smart |                                                                                                                                                                                                                            |  |  |  |  |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Grid Project                    | Explanation                                                                                                                                                                                                                |  |  |  |  |
| AMI Meter & NIC Capital Cost    | Integrated residential meter and NIC for 23,000 endpoints; 7,000 commercial meters with removable NIC.                                                                                                                     |  |  |  |  |
| AMI Meter Installation          | NES commercial installation for 7K meters and 3k residential meters with vendor installation for 20K residential meters.                                                                                                   |  |  |  |  |
| IT Hardware & Software          | Production and test Head End Systems, including servers, data storage, database and other software                                                                                                                         |  |  |  |  |
| AMI Network Equipment           | Includes Advanced Security Package.                                                                                                                                                                                        |  |  |  |  |
| AMI Network Deployment Support  | Includes project management, system testing support, pre-deployment planning, design and engineering of the AMI Network, field deployment support, hardware site survey and system configuration and integration services. |  |  |  |  |
| AMI Network Install             | Contractor 2-man crew and bucket at \$84/hr. Also includes 10-15% of installations requiring a new pole, transformer & secondary.                                                                                          |  |  |  |  |
| IT Integration                  | IT labor to construct system interfaces.                                                                                                                                                                                   |  |  |  |  |
| Field Work Management           | Program Management of field work force.                                                                                                                                                                                    |  |  |  |  |
| Pre-deployment Planning         | Contract legal expenses and planning                                                                                                                                                                                       |  |  |  |  |
| Change Management & Training    | Changes in internal business processes                                                                                                                                                                                     |  |  |  |  |
| Customer Communications         | Bill stuffers, door hangers, Corporate Communications                                                                                                                                                                      |  |  |  |  |
| Advanced Voltage Mgmt           | Includes purchase and installation of 163 capacitor banks and Volt-Var Optimization software and integration.                                                                                                              |  |  |  |  |
| Direct Load Control             | Includes customer enrollment incentives for 10 years, 4,000 load control switches and Head End System hardware and software.                                                                                               |  |  |  |  |
| Critical Peak Pricing/Peak Time | Includes customer enrollment incentives for 10 years.                                                                                                                                                                      |  |  |  |  |
| SLA/System Acceptance Test      | Internal labor for System Acceptance Test                                                                                                                                                                                  |  |  |  |  |
| WAN/DA Communications           | Option #3-Initially, DA using NES 900 MHz system with radios installed at the end point capacitor controllers. In 2012, DA using NES fiber @ sub and \$200k for SCADA Center software and 163 routers.                     |  |  |  |  |
| Internal Implementation Support | Cost for design eng., customer eng., test section                                                                                                                                                                          |  |  |  |  |
| Cyber Security                  | Intrusion and penetration testing after installation.                                                                                                                                                                      |  |  |  |  |
| Contingency                     | 6.0% contingency based on final bid process and funding for additional hardware to meet required SLAs.                                                                                                                     |  |  |  |  |
| Warranty                        | Includes five year warranty on collectors, routers, NICs, meters and load control switches.                                                                                                                                |  |  |  |  |




Smart Grid Project Total Budget vs. Actual to Date (as of Feb 29, 2012)



Smart Grid Projected Budget vs. Actual

(as of Feb 29, 2012)





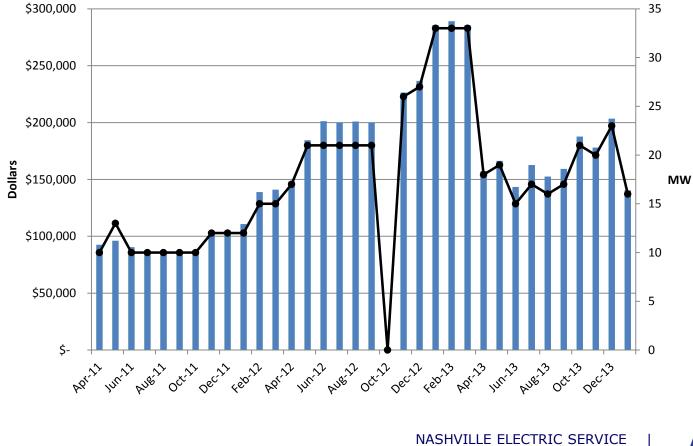
### Financial Smart Grid Considerations

- Smart Grid Business Case development
- Employee transitioning
- AMI meter installation costs
- Depreciation strategy for existing meters
- FERC accounts for Smart Grid components
- AMI meter refusal (customer charge) LECTRIC SERVICE
- Health and privacy considerations





### Advanced Voltage Management


- Analytical process to determine when to manage peak demand based on input from Budget & Rates, Engineering, and System Control sections.
- Events initiated through existing SCADA in System Control.
- Dispatchers initiate event to four different groups of load (now switched simultaneously)







### \$5.3M in Voltage Reduction Savings YTD



28

# Progress, Results and Future



### **Benefits of Upgraded Meters**

### **Benefits to NES**

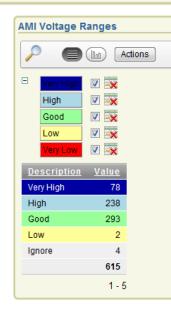
- Accurate system information
- Improved system reliability and power quality
- Dynamically manage system load

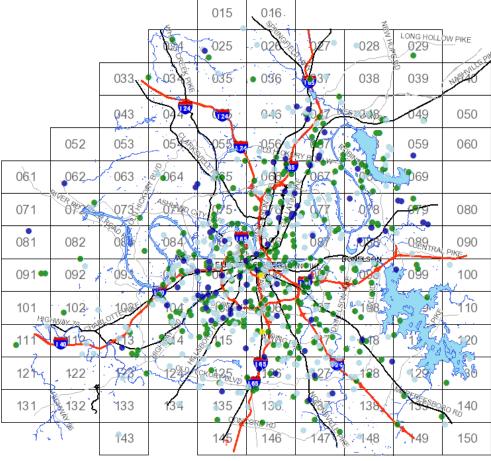
### **Benefits to the Customer**

- Meter readings done remotely
- Better for the environment
- Lights coming on sooner after an outage







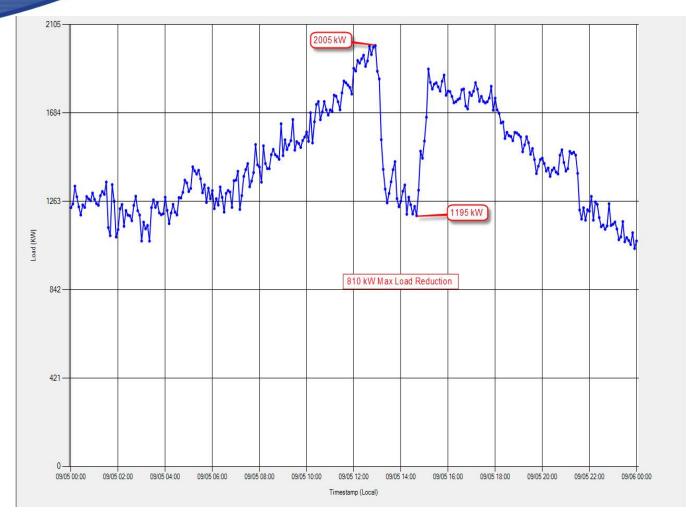


### AMI Voltage Feedback Loop

#### Information

#### Legend:

- Very High: voltage pu between 1.0501 and 1.2000
- High: voltage pu between 1.0300 and 1.0500
- Good: voltage pu between 0.9700 and 1.0299
- Low: voltage pu between 0.9500 and 0.9699
- Very Low: voltage pu between 0.8001 and 0.9499
- Ignore: voltage pu <= .8000 and voltage pu > 1.2000





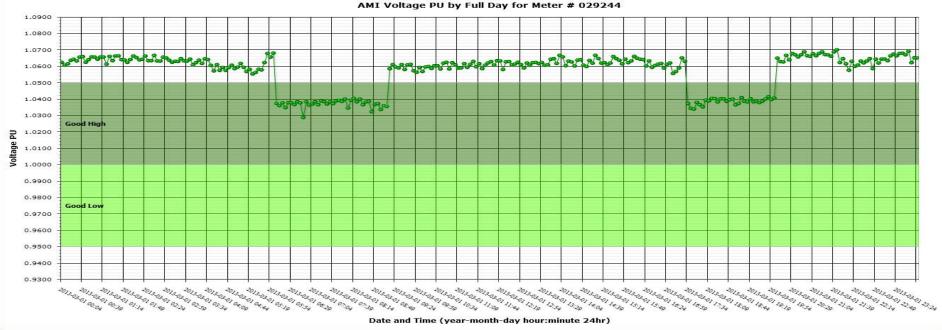



Program combines a 2-way NAN and LCR for load reduction and load voltage/current data

### Measurement and Verification with 2-way Communication

- Verified Load Shed
- Spinning Reserve
- Remote Auditing
- Certified Report Auditing
- Tamper Evidence
- Certified Reporting




### Voltage Fluctuation - Old Hickory F8(PDM)

| Event | Date      | Started | Ended | No. of Hours | Est. MW | <u>Est. kWh</u> |
|-------|-----------|---------|-------|--------------|---------|-----------------|
| 79    | 1/22/2013 | 6:15    | 9:00  | 2.75         | 33      | 90,750          |
| 80    | 2/1/2013  | 5:45    | 8:45  | 3.00         | 33      | 99,000          |
| 81    | 3/1/2013  | 6:00    | 8:45  | 2.75         | 27      | 74,250          |
| 82 🖁  | 3/1/2013  | 17:30   | 20:00 | 2.50         | 27      | 67,500          |
| 83    | 3/2/2013  | 10:30   | 13:00 | 2.50         | 27      | 67,500          |
| 84    | 3/2/2013  | 16:30   | 19:45 | 3.25         | 27      | 87,750          |
|       |           |         |       |              |         |                 |

#### Information

AMI Voltage PU data is available for Meter # 029244 starting on August 15, 2012. The highest AMI Voltage PU on record for Meter # 029244 is **1.076** for January 14, 2013 The lowest AMI Voltage PU on record for Meter # 029244 is **.02** for December 13, 2012







### As of March 21, 2014

- Phase 1
  - 40 MW of Voltage VPP load reduction
  - 1 MW of Load Control- pilot load reduction
  - 2 MW of CPP pilot (possible future)
- Phase 2: Increase to ~3% or 80MW of peak demand
- Phase 3 (optional): Increase capacity >3% of demand





### **Future SG Initiatives**

- Meter Data Management System Implementation
- Integration to NES Outage Management System
- Continued AMI Meter Deployment
- Development of a Smart Grid Maintenance Plan
- Smart Grid Data Analytics Initiative
- Prepayment
- Customer Web Presentment
- Future TOU and/or Coincident Peak Rates





## **Questions?**

i i

11

